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Tropospheric delay modeling error continues to be one of the largest sources of error in VLBI analysis. For standard \ E Vo cmonar - "+ Ray Tracing, scale bias: 0.017 ppb
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functions assume that tropospheric delay at a site is azimuthally symmetric. As this assumption does not reflect reality, we 2 Zenith Delays = E. L

have determined the raytrace delay along the signal path through the troposphere for each VLBI quasar observation. We : IlII IIIIIII 4 ol :

determined the troposphere refractivity fields from the pressure, temperature, specific humidity and geopotential height fields 30 § ‘ 4t p
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Geometric excess at 5 deg contribution: 20 mm _ _ raytrace delays than with VMFL1 for 72.3% of « Scale bias = slope of best-fit-line through differences
How much of the_observed wet zenith delay is modeled by the baselines in mean baseline length
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We ran VLBI solutions with raytraced delays: respectively out of 28 sites
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« Evaluate the hydrostatic and wet delays along the path => a priori total and wet delays for each VLBI observation

« Compute a wet partial derivative for each observation = (raytraced wet delay)/(raytraced wet zenith delay) for each
observation

 Current processing time: 1000 VLBI observations at 5 deg elevation -> 1 second
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